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Abstract— Impaired arm movements in stroke appear as a set of 

stereotypical kinematic patterns, characterized by abnormal joint 

coupling, which have a direct consequence on arm mechanics and 

can be quantified by the net arm stiffness at the hand. The 

current available measures of arm stiffness during functional 

tasks have limited clinical use, since they require several 

repetitions of the same test movement in many directions.  Such 

procedure is difficult to obtain in stroke survivors who have 

lower fatigue threshold and increased variability compared to 

unimpaired individuals. The present study proposes a novel, fast 

quantitative measure of arm stiffness during movements by 

means of a Time-Frequency technique and the use of a reassigned 

spectrogram, applied on a trial-by-trial basis with a single 

perturbation. We tested the technique feasibility during robot 

mediated therapy, where a robot helped stroke survivors to 

regain arm mobility by providing assistive forces during a hitting 

task to 13 targets covering the entire reachable workspace.  The 

endpoint stiffness of the paretic arm was estimated at the end of 

each hitting movements by suddenly switching of the assistive 

forces and observing the ensuing recoil movements.  In addition, 

we considered how assistive forces influence stiffness. This 

method will provide therapists with improved tools to target the 

treatment to the individual’s specific impairment and to verify 

the effects of the proposed exercises. 

Keywords- stiffness, arm impedance, stroke, robot therapy 

I.  INTRODUCTION  

Recovery of arm function is a crucial goals following stroke 
and restoring intra-limb coordination remains an important goal 
in physical therapy [1]. Treatment strategies generally focus on 
sensorimotor intervention (e.g., constraint-induced movement 
therapy)[2, 3], progressive-resistive [4], and robot mediated 
training [5-7] with emphasis on maximizing functional use of 
the impaired limb.  

A well-known consequence of stroke is the appearance of 
stereotypical and anomalous kinematic patterns due to 
abnormal synergistic muscle activations. Even though these 
abnormal synergies have been extensively studied [8-10], our 
understanding of the physiological and biomechanical 
characteristics of the phenomenon still remains limited.  
Abnormal muscle activations have direct and indirect 
consequences on limb mechanics, including modified 
tixotropic characteristics of connective tissues, and the overall 
effect on movement is quantifiable by the net mechanical 
impedance. Previous experiments aiming at quantifying limb 
impedance in stroke survivors focused on postural and single 

joint movements [11, 12]. An attempt was made to measure 
stiffness during multijoint passive movements [13]; however, 
greater insight on the physiological consequence of abnormal 
muscles’ activations can be gained from the analysis of more 
complex tasks such as reaching or hitting. Current methods to 
measure impedance during movements are based on regression 
techniques [14, 15]. These methods have limited clinical use 
since they require several repetitions of the same kind of 
movement, which are difficult to obtain in stroke survivors. 

The objective of this study is to examine the mechanisms of 
abnormal arm impedance regulation during movements by 
means of a new technique which requires a single brief 
perturbation during a single movement rather than the 
repetition of multiple trials perturbed in different directions 
[16]. Although frequency domain methods have previously 
been used to estimate stiffness and damping [17], the method 
presented here allows the estimation of such variables as a 
function of time. Thus, local limb stability can be assessed 
during movements. The knowledge of local stability has major 
functional implications since it identifies how a subject can 
interact with the environment as well as the compensation 
strategies to stabilize the system used by each individual. 

This study tested the possibility to use the proposed 
technique during robot mediated therapy for obtaining valuable 
physiological and biomechanical information on the behavior 
of stroke survivors during training. We assessed the influence 
of different aiding forces on the estimation of arm stiffness 
demonstrating that this quantitative measure is instrumental to 
assess differences in limb mechanics among individuals with 
different levels of impairments. This would help therapists to 
prescribe and assess treatments on a case-by-case basis. 

II. METHODS 

We estimated the endpoint stiffness of stroke survivors’ 

paretic arm during robot mediated therapy trials by means of a 

Time-Frequency domain identification technique. The 

experimental training protocol has been previously reported [6] 

and is summarized here for clarity. Subjects were trained using 

a hitting task over a large workspace, while a robot provided an 

aiding force. This force, was aimed at the target, and remained 

constant until the target was reached, where it was suddenly 

turned off.. We used this sudden drop of force as a convenient 

perturbation to be used in the estimation of arm stiffness [18] 

because it did not interfere with the ongoing training procedure  
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and passed largely un-noticed by the patient. However, the 

technique can be applied to a large variety of perturbations.  

A. Subjects 

Nine chronic stroke survivors (1-12 years post stroke) 
participated in the study after signing informed consent 
conform to the ethical standards of the Helsinki declaration. 
The characteristics of the subjects are described in Tab. I 

B. Task 

Subjects sat in a chair while grasping the handle of the 
manipulandum “Braccio di Ferro”[19]. A custom built cast 
restrained the movement of the wrist. A light support was 
connected to the forearm to allow low-friction sliding on the 
horizontal surface of a table (fig.1). The translation of the 
shoulder was eliminated using a harness connected to the chair. 
The arm motion was restricted to the horizontal plane, 
eliminating the influence of gravity; hence, only shoulder and 
elbow flexion/extension were allowed and their motion was 
assisted according to equation 1.Endpoint position was 
collected at 1 kHz using the robot encoders. The visual 
representation of the targets was obtained with a 19” screen 
positioned vertically in front of the subject at a distance of 
about 1 m. A set of round targets (diameter 2 cm) were located  
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Figure 2. Force Field, Structure of the basic trial. 

 
on three concentric circles centred at the shoulder, as depicted 
in fig. 1. The difference in radius between each circumference 
was 10 cm; within each circle the targets were by distances of 
6.26cm (A), 8.77 cm (B),and 5.65 cm (C).  

A stereotypical trial is described by the following steps: 

1. From one of the three starting positions ‘A’ one of the 
seven ‘C’ targets was randomly selected (fig.1); the 
aiding force was turned on; an acoustic feedback was 
given synchronously with the reaching of the target 
while the aiding force was suddenly turned off for a 
time interval of 1s (fig. 2); 

2. Point 1 was repeated for the ‘C’ to ‘B’ transition after 
having randomly selected the ‘B’ target;  

3. Point 2 was repeated for the ‘B’ to ‘A’ transition after 
having randomly selected the ‘A’ target.  

The duration of the wait and rise times for each trajectory 
within the trial was 1 s (fig. 2). The aforementioned three steps 
were repeated so to have three presentations of each of the 
seven ‘C’ targets for a total of sixty-three movements (3x3x7). 
The overall protocol consisted of four blocks of trials. The 
therapist could decide, in accordance with the subject, to 
extend the session with additional blocks characterized by 
lower levels of force. The overall duration of the sessions 
ranged from 45 to 75 minutes.  

C. Force fields 

The haptic representation of the targets was generated by 
the robot according to the following impedance control 
equation: 
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where 
T

x  is the target position, 
H

x  is the position of the 

hand/handle, F  is the maximum level of the force field (see 

Tab. II), )(Fρ  is the activation function of the field (a ramp 

with a rise time of 1s), and J is the Jacobian matrix of the 

robot arm, whose transpose matrix maps the desired force to be 
transmitted by the handle into the torque that must be delivered 
by the motors. The two additional terms in Eq.1 represent a 
viscous field to stabilize the arm posture and a rigid wall 
beyond the circle of ‘C’ targets, which provided a haptic 
representation of the boundary of the workspace. The viscous  

 

Figure 1. Experimental Setup 

TABLE I SUBJECT CHARACTERISTICS 

 Age DD 
FM 

before 

FM 

after 

FM 

3 m a 

 

Ash 

 

Gender E PH 

S1 72 28 6 8 7 3 M I L 

S2 69 25 12 18 22 1+ F I R 

S3 57 40 17 21 18 3 M I L 

S4 34 24 13 23 24 1+ F I R 

S5 30 12 6 9 11 2 F I L 

S6 46 26 6 13 16 2 F H L 

S7 55 76 36 41 41 1 F H L 

S8 59 39 5 8 7 3 F I R 

S9 53 39 41 45 42 1 F H R 

Subjects data. Age: years. DD= duration of disease (months) FM = upper arm Fugl- Meyer 
score, max 66/66; before, after and after three months with respect to the robot therapy sessions, 
Ash= Ashworth score, Gender: M=male, F=female; E= Etiology: I=ischemic, H= Hemorrhagic; 
PH=paretic hand: L=Left, R=Right 
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coefficient rB was empirically determined to be 12Ns/m as a 

trade-off between stability and dissipated energy, while the stiff 
virtual wall was rendered with a 1000 N/m elastic 

coefficient
w

K . 

The force level of the robot facilitation was selected by 

the physical therapist as the minimum value that evoked a 

functional response, i.e. a movement in the intended direction. 

The initial assistive force is subject-specific, and might depend 

upon the reachable space that each subject can achieve in the 

workspace, which the Fugl-Meyer [20] and modified 

Ashworth [21] scores cannot always describe. The minimum 

assistive force chosen in the first session was always presented 

to the subject in the following sessions. This allowed us to 

evaluate throughout the treatment the improvement of arm 

kinematics. As the therapy proceeded, lower levels of force 

were applied to comply with the improvement of the subject. 

The minimum force applied in each session is presented in 

Tab. II. 

D. Time Frequency Domain 

The sudden drop of the assistive force towards the end of a 
trial can be considered as a “hold & release” type of 
perturbation [18]. Hence, the residual vibration of the arm in 

the Cartesian space ),( yxX =∂ can be monitored. By tracking 

the vibrational frequency as a function of time, stiffness and 
damping can be calculated using mathematical tools from  
modal analysis.  

To estimate the impedance parameters of the arm from the 
“hold & release” response, we assumed that the arm behaved as 
a second order system, following the equation: 

( ) ( ) ( ) 0),,,(),,(),( =∂+∂+∂ tXtXXXKtXtXXBtXtXI &&&&&&&     (2) 

where I , B , and K  are the matrices of inertia, damping and 
stiffness, respectively. The use of higher order models might 
have given further insight on the reflexive nature of the system; 
however, a numerical optimization dependent on the 
assumption of a cost function would have been required. 

Assuming that the recorded response is a solution of 
equation 2, the identification of the system resonant angular 

frequencies 
i

ω can be carried out using a set of generic 

elementary functions )(tg , commonly called “windows”. The 

main feature of a window function is to be simultaneously 
localized both in the time and frequency domains. If we think 

of the window )(tg  sliding along the non-stationary time-

variant signal )(tx , for each time shift τ  we can compute the 

Fourier transform of the product )()( τ−⋅ tgtx . Such function 

is called “Short Term Fourier Transform” (STFT) and can be 
expressed as: 

dtetgtxSTFT tjωττω −

+∞

∞−

−⋅= ∫ )()(),(    (3) 

A spectrogram is a representation of the STFTs 
magnitude calculated on the signal )(tx  for multiple time 

shiftsτ . The spectrum of the signal at one instant is calculated 

as the average of all STFTs enclosing that instant in the time 
window and the magnitude peaks identify the resonant 
frequencies of the system. However, the intrinsic algorithm 
necessary to calculate the spectrogram “smears” the energy 
density in the neighborhood of time and frequency, due to the 
extensive averaging of all the windows encompassing a certain 
instant. Thus, it is difficult to precisely identify the resonant 
frequencies by only looking at the peaks of 

),( τωSTFT magnitude. To overcome this drawback, a method 

known as reassigned spectrogram (RS) was used to track the 
variation of instantaneous frequencies after the perturbation 
[22]. 

From complex analysis, a maximum of ),( τωSTFT can 

be computed by identifying where the phase of the complex 
function reaches a steady state [22]. Thus, by calculating the 
partial derivatives of STFT phase, with respect to time and 
frequency, allows us to identify where the stationary phase is 
with respect to the location of the window in time and 
frequency, identifying a time delay and frequency shift that 
can be used to “reassign’ the position of maximum energy 
[23]. To calculate the STFT spectrogram, we used a 0.75s 
Kaiser window, with β=3, convolving the window every 2ms. 
The same parameters were used to calculate the reassigned 
spectrogram. When the instantaneous frequencies were 
identified in the RS, we used a Savitzky-Golay polynomial 
filter [24] to obtain a continuous time-varying frequency 
function. 

E. Eigenvalues 

Given the duality between time and frequency domain, the 
matrix coefficients of (2) can be estimated by monitoring the 
natural frequencies and vibrational modes of the system [25]. 
To solve such problem, equation 2 must be decoupled in a set 
of mutually independent equations whose coefficients are 
functions of the time-varying resonant frequencies of the 

TABLE II MINIMUM AIDING FORCE FOR EACH SESSION 

 
Max 

Force 

Session 

1 2 3 4 5 6 7 8 9 10 

S1 25 25 18 18 15 15 15 15 13 13 10 

S2 15 13 12 12 10 9 9 6 6 6 6 

S3 13 10 10 9 8 8 8 7 6 5 4 

S4 9 6 6 6 5 5 7 5 4 2 2 

S5 9 5 4 3 3 3 3 3 3 3 2 

S6 13 8 8 8 7 7 9 6 5 4 4 

S7 5 2 1 0 0 0 0 0 0 0 0 

S8 22 20 18 16 16 14 12 12 12 12 8 

S9 5 3 2 1 0 0 0 0 0 0 0 

Minimum level of aiding force reached for each subject at different sessions. Each session 
started with the maximum level of force (gray column). Hence, an intra-subject comparison of 
stiffness with the same aiding force was possible between the first and the last session. The force 
range of 5-6N encompassed the majority of subjects, and was used to assess the relationship 
between estimated stiffness and Ashworth score. We performed a sensitivity analysis between 
force and stiffness at 5, 10, and 15N. 
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system. To this purpose, (2) ought to be normalized to a monic 
system, where spectral algebraic theory easily applies [26]. 

We first estimated the inertial parameters of the subjects' 
arm with respect to the shoulder and elbow joints using a 
regressive equation [27]. Hence, the endpoint inertial matrix 
was calculated by means of the Jacobian operator of the 
subject’s arm between the joint space and the Cartesian space 
[28]. Since the inertial matrix is real and positive definite, it 
admits real squared roots. Without loss of theoretical rigor, we 
could consider only the positive square roots of the inertial 
matrix, which generates a new positive definite matrix that 

admits inverse. Thus, matrix 2

1
−

I  exists and is symmetric and 
real. This matrix is used to normalize (2) into a new monic 
system, whose eigenvalues are the same of (2) [25], namely. 
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The decoupling of (4), can be obtained by pre- and post- 

multiplying each matrix of (5) by the eigenvector matrix P of 

K
~

 which represents the directions of the vibrational modes in 

the Cartesian space, namely: 

( ) ( ) ( ) 0][]2[ 2 =+Γ+∂ tYdiagtYdiagtY η&&&  (6) 

In general, the normalized resonant frequency )(2 tη and 

normalized damping factor )(tΓ  are time-varying and can be 

estimated as follows [29]: 
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where 
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( )tA
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d
t
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Therefore, by obtaining the instantaneous amplitude ( )tA  

and the instantaneous resonant angular frequency ( )tiω  from 

the RS (fig.3), and the eigenvector matrix P  it is possible to 

reconstruct B and K  using equations (4-8). 

F. Eigenvectors 

To obtain a real matrix ( ℜ∈P ), the system ought to be 

classically damped. It follows that the eigenvectors of the 

damping matrix B
~

 are aligned with those of the stiffness 

matrix K
~

, and that the vibrational modes of the system have 
fixed nodes in the chosen reference frame [30]. 

From linear algebra, the general solution of (2) is the 
linear combination of all the solutions of the eigenproblem:  
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==  are the eigenvectors (i.e. the directions of 

the vibrational modes in the Cartesian space) of matrix K
~

. In 
our case, since the system has 2 planar degrees of freedom, the 
solution is also equal to the super-position of each damped 

mode of vibration 
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The modes can then be identified by means of a filtering 

process and, since 
1

p
v

 and 
2

p
v

are mutually orthogonal, using a 

single value decomposition (SVD) between 
11

s  and 
21

s  

identifies respectively 
1

p
v

 and its orthogonal 
2

p
v

. 

III. RESULTS 

A. Stiffness tracking  

A stereotypical response to the perturbation is depicted in 
figure 3a. The stiffness and damping can be estimated by 
means of the frequency tracks and amplitude decay of the 
STFT spectrogram (fig.3b). The STFT and its reassignment 
(fig 3c) have the same amount of points. However, the points 
that were “smeared” in the neighborhood of the STFT peaks 
are concentrated on a narrower bandwidth in the RS. This re-
mapping algorithm can provide a “super-resolution” in both 
time and frequency compared to STFT. However, the super-
resolution cannot be constant throughout the frequency and 
time domain, because of its dependency on the smearing of the 
energy caused by the convolving windows. 
Arm stiffness can be influenced by three separate factors: the 
intrinsic stiffness of muscles and tendons, the level of 
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Figure 3. a) Exemple of oscillation after negative force step. b) STFT, c) 

Reassigned Spectrograms, and d) time-varing stiffness, Subject S7, Force 5N, 

central target of circle B in Fig.1, last session. 
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voluntary co-contraction, and the intervention of reflexes of 
various natures. The technique that we propose cannot 
separate the estimations of these three components as other 
methods can do [31]. However, we can observe the influences 
of each factor as the estimated stiffness changes in time (fig 
3d): the intrinsic stiffness is mostly dependent upon the 
biomechanics of the limb and it influences the stiffness 
estimation right after the perturbation is applied; stretch 
sensitive reflexes, act usually on a specific time scale, between 
70 and 150ms after the perturbations onset, and their effect is 
visible on the stiffness estimation with 50ms delay [32, 33]. 
To highlight the reflexes’ contribution to the stiffness, all the 
estimations and relative statistics were calculated at 200ms 
after the perturbation onset. Later estimates are influenced by 
voluntary control, among other factors.  

B. Stiffness and Damping variation through the workspace 

Figure 4 presents a stereotypical distribution of stiffness 
and damping ellipses for subject S2, where the stiffness was 
tested using 3 different levels of force (i.e. 5-10-15N) at 
200ms after the perturbation. We can notice that the shape of 
the ellipses is quite repeatable within the workspace, even 
though the magnitude depends upon the force level and the 
position. Most remarkably, a higher force will elicit a higher 
stiffness in a position of the workspace that is more difficult to 
reach for the subject. This is immediately noticeable by 
examining the velocity profiles to reach the target. The shape 
of the ellipses is mostly elongated in the direction where the 
aiding force was acting before hitting the target. We can notice 
that the magnitude of damping is about 1 order of magnitude 
smaller compared to stiffness. Since there are no well-known 
neural mechanisms for the modulation of damping, in this 
work we will focus on the modulation of stiffness. 

C. Effect of treatment on Stiffness 

We calculated the variation of the average stiffness of the 
workspace between the first and last session of each subject. 
Each individual started with the minimal assistive force 
required to initiate the movement, and each following session 
started with such values. We chose two metrics for the 
comparison: the average of the stiffness matrix determinant 
and the average of the maximum eigenvalues throughout the 
workspace (fig.5). Both metrics decreased during traning, 
indicating the beneficial effect of the therapy in diminishing 
hypertonic activity/spasticity and increasing the ability to 
regulate the interaction with the environment. 

Levels of stiffness metrics are higher in the first session for 
subjects with lower Ashworth score (Ash); however, such 
subjects are also those who have greater percent decrease in 
stiffness at the end of therapy. Metrics populations were 
compared using a one-way ANOVA whose result are reported 
in Table III (level of significance p=0.05). For most of the 
subjects with higher Ashworth score, even though a decrease 
in stiffness was found, it was not statistically significant. 
However, a repeated measured ANOVA, with subject as a 
random factor confirmed a statistical decrease in stiffness 
metrics after the rehabilitation process. 

 

 
 

D. Stiffness as a function of Ashworth Score 

Although a statistically significant decrease of the stiffness 
metrics were detected, as a consequence of the training (Tab. 
I), they were not associated with changes of the Ashworth 
score. To address the relationship between the Ashworth score 
and a global measure of stiffness, we again considered the 
average of the stiffness matrices’ determinants throughout the 
workspace. For a fair comparison, we considered a set of 
sessions towards the end of the training where the majority of  
subjects could reach similar aiding forces. We computed the 
average determinant of the last 3 sessions with maximal aiding 
force ranging from 5 to 6 N. The relationship between the 
Ashworth score and the average determinant is reported in 
fig.6. 

A series of one-way ANOVAs were computed to verify any 
significant difference in the populations of chosen stiffness 
metrics calculated for different Ashworth score groups. We 
found no significant difference within each Ashworth group. 
Moreover, no significant difference was found between the 
group with Ash=1 and Ash=1+ (F=0.4, p=0.54). However, 
significant difference was found when comparing Ash=1,1+ 
with Ash=2 (F=5,27, p=0.018) and Ash=2 with Ash=3 
(F=15.11, p=0.006). 

 

Figure 5 Comparison between the stiffness metrics between the first and 

the last session using the same level of force. Force level was chosen as the 

minimal to initiate the movement. For significant statistical differences in 

the metrics populations see Table III. 

 

Figure 4. Stiffness and damping estimations for S2 (Ash. 1+) for each 

target of the workspace, with 3 levels of aiding force. On top, velocity 

profiles to reach two targets (yellow and black squares, respectively) 
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IV. DISCUSSION AND CONCLUSION 

We demonstrated how stiffness can be best characterized 
as a “local” variable that is a function of time, limb kinematics 
in the workspace, assistive force, and level of impairment of 
the subject. Our measures indicated that when all of the above 
conditions are within a certain tolerance, the proposed 
estimating method is fairly repeatable. The technique can 
effortlessly be implemented during robot therapy and allows 
for an online checking of the subject rehabilitation process. 
Even though mechanical external vibration could compromise 
the measuring process the vibrational modes of the robot are 
generally at higher frequency compared to those monitored for 
the stiffness estimation, and can be easily rejected. On the 
other hand, this requires to previously measure the resonant 
frequencies of the robot off-load. 

In Sec. III.C we observed that at the beginning of training, 
stiffness metrics estimated on subjects with Ash=1/1+ were 
higher compared to the metrics estimated for subject with 
greater Ashworth score. This result seems to contradict the 
notion that the Ashworth score is a representation of stiffness. 
Moreover, we observed that in the direction of higher 
impairment stiffness increased as the aiding force increased 
(as we described in Sec. III.B).  Hence, we would have 
expected to find lower stiffness for people with lower 
Ashworth score, also because they started the training with a 
lower level of force. Conversely, at the end of training we 
found that subjects with lower Ashworth score greatly 
diminished their stiffness, while individual with higher 
Ashworth score did not. Likewise, we expected to find a 
decrease of Ashworth score for subjects that had a 
considerable decrease in stiffness with training, but such 
changes were not found. We hypothesize that at the beginning 
of the training the higher stiffness estimated in individuals 
with lower Ashworth score is due to the reflexive component 
of the stiffness, while for subjects with high Ashworth score, 
such component is limited as demonstrated in [31]. Since the 
subjects participated to a similar training process the influence 
of soft tissue contractures would be similar among them. Thus, 
the decrease in stiffness observed in subjects with  

 

lower Ashworth score might depend upon an improved 
reflexes modulation. We suggest that the Ashworth score is 
keener to represent the rigidity of the connective and muscular 
(active) tissue [11], not the reflexive component of spasticity 
[31]. While stiffness has been long considered an index for 
spasticity/tonicity, we suggest that when associated to its 
hand-position dependency in the workspace it can be an 
appropriate quantitative measure of functionality. Indeed, 
while the Fugl-Meyer score indicates the possible 
configuration that the limb can assume, and the Ashworth 
score gives a global evaluation of muscular rigidity, the local 
stiffness is complementary to these two assessments and helps 
to identify how mobile the limb is and the specific intervention 
to improve mobility. Moreover, the shape of the stiffness 
ellipses indicates if the impairment depends on a specific joint 
(orientation of the stiffness), is due to general co-contraction 
(magnitude and roundness of the ellipses), or can be overcome 
by planning different reaching trajectory. This goes toward a 
personalized therapy and can help in specific pharmaceutical 
intervention such as botulinum toxin injections. 
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